Dallo Spazio alla Terra: un Nuovo Concetto di Pannelli Solari

Uno dei problemi più importanti delle Fonti Energetiche Rinnovabili (RES) è l’intermittenza. Nel caso del solare,
sono due i problemi intrinsechi alla tecnologia: produzione nulla
durante la notte e produzione inefficiente nel caso di maltempo. Col
fine di superare questi ostacoli, i ricercatori dello Japan Space Systems e dello Japan Aerospace Exploration Agency stanno sviluppando un’astronave con una superficie quadrata fatta di pannelli solari, la quale userà microonde per trasferire l’energia prodotta nello spazio alla terra.

L’area totale dello schermo solare sarà caratterizzata da lati lunghi più di 2 km (1.2 miglia). La tecnologia Space Solar Power System (SSPS)
non risentirà del maltempo o dell’intermittenza delle ore notturne
poiché sarà posizionata in modo da esporsi costantemente al sole,
producendo così circa dieci volte la potenza di moduli fotovoltaici
posti sul pianeta terra. Uno dei problemi sta nella trasmissione
dell’energia dalla nave spaziale alla terra, anche se lo scorso Marzo lo
Japan Space Systems ha convertito 1.8 kW elettrici in
microonde e queste sono state trasmesse a un’antenna posta a una
distanza di circa 60 metri (180 piedi) per poi essere convertite
nuovamente in energia elettrica. Perché microonde? Lo scienziato e
ingegnere Daisuke Goto ha spiegato che queste ultime viaggiano
in linea retta e possono penetrare le nuvole senza problemi. I
ricercatori hanno messo a punto il dimensionamento del ricevitore delle
onde, il quale sarà caratterizzato da un antenna di più di un chilometro
di diametro posta sulle acque dell’oceano e collegata alla rete
elettrica. All’interno del sito web dello Japan Space Systems viene chiarito quale sarà la roadmap della tecnologia di trasmissione. Il primo step
sarà una dimostrazione in orbita di 100 kW, poi proveranno con 10 MW,
poi 250 MW e infine con 1 GW, potenza che sarà quella del sistema
commerciale finale.

Uno dei più grandi ostacoli della SSPS sarà il trasporto dei
component in orbita e il loro assemblaggio. Gli scienziati sperano in
una vita utile della tecnologia non inferiore ai 40 anni e la
manutenzione ed eventuali riparazione verranno effettuati da robot. Goto ha anche affermato che “ci vorranno almeno altri 30 anni prima che il primo prototipo sia pronto per entrare in funzione” ma ne varrà la pena poiché “noi
stimiamo che una unità di SSPS possa produrre tanta energia quanta ne
produce una centrale nucleare
. Quindi sicuramente questa tecnologia non
potrà risolvere il problema energetico mondiale ma speriamo possa
contribuire come una risorsa futura ed efficiente”.

Praticamente stanno cercando di costruire la Torre del Sole di Conan.

Dallo Spazio alla Terra: un Nuovo Concetto di Pannelli Solari

spaceforeurope:

Credit: ESA

Three days before arriving at Mars on 19 October 2016, the ExoMars Trace Gas Orbiter (TGO) will release its entry, descent and landing demonstrator, Schiaparelli, towards the Red Planet. ExoMars is several missions in one. Its orbiter is a science and relay mission.

The TGO will search for evidence of gases, such as methane, that may be associated with geological or biological processes.

The Schiaparelli lander is a technology demonstrator to test key technologies for future missions to Mars.

For more information: “ExoMars at Mars” video.

What Cargo is Launching in October to the International Space Station?

nasa:

On Sunday, Oct. 16, Orbital ATK is scheduled to send new science experiments to the International Space Station

The Cygnus spacecraft will blast off from our Wallops Flight Facility in Virginia at 8:03 p.m. EDT carrying more than 5,000 pounds of science, supplies and equipment.

Let’s take a look at a few of these experiments:

Cool Flames

Low-temperature fires with no visible flames are known as cool flames. The Cool flames experiment examines these low-temperature combustion of droplets of a variety of fuels and additives in low gravity.

Why are we studying this? Data from this experiment could help scientists develop more efficient advanced engines and new fuels for use in space and on Earth.

Lighting Effects

Light plays a powerful role in our daily, or circadian, rhythms. Astronauts aboard the space station experience multiple cycles of light and dark every 24 hours, which, along with night shifts and the stresses of spaceflight, can affect their sleep quantity and quality.

The Lighting Effects investigation tests a new lighting system aboard the station designed to enhance crew health and keep their body clocks in proper sync with a more regular working and resting schedule.

Why are we studying this? Lighting manipulation has potential as a safe, non-pharmacological way to optimize sleep and circadian regulation on space missions. People on Earth, especially those who work night shifts, could also improve alertness and sleep by adjusting lighting for intensity and wavelength.

EveryWear

A user-friendly tablet app provides astronauts with a new and faster way to collect a wide variety of personal data. The EveryWear experiment tests use of this French-designed technology to record and transmit data on nutrition, sleep, exercise and medications. Astronauts use the app to complete questionnaires and keep medical and clinical logs. They wear a Smartshirt during exercise that records heart activity and body positions and transmits these data to the app. Finally, rather than manually recording everything that they eat, crew members scan barcodes on food packets to collect real-time nutritional data.

Why are we studying this? EveryWear has the potential for use in science experiments, biomedical support and technology demonstrations.

Fast Neturon Spectrometer

Outside the Earth’s magnetic field, astronauts are exposed to space radiation that can reduce immune response, increase cancer risk and interfere with electronics.

The Fast Neutron Spectrometer (FNS) experiment will help scientists understand high-energy neutrons, part of the radiation exposure experienced by crews during spaceflight, by studying a new technique to measure electrically neutral neutron particles.

Why are we studying this? This improved measurement will help protect crews on future exploration missions, like our journey to Mars.

Watch Launch

Ahead of Sunday’s launch, there will be various opportunities to learn more about the mission:

What’s on Board Science Briefing
Saturday, Oct. 15 at 4 p.m. EDT
Scientists and researchers will discuss some of the experiments being delivered to the station.
Watch HERE.

Prelaunch News Briefing
Saturday, Oct. 15 at 6 p.m. EDT
Mission managers will provide an overview and status of launch operations.
Watch HERE.

LAUNCH!!!
Sunday, Oct. 16 at 7 p.m. EDT
Watch live coverage and liftoff! Launch is scheduled for 8:03 p.m. EDT.
Watch HERE.

Facebook Live
Starting at 7:45 p.m. EDT you can stream live coverage of the launch on NASA’s Facebook page.
Watch HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com